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Abstract. The one-triplet excitation spectra and thermodynamic properties for the dimerized phase of the
frustrated bilayer Heisenberg model are studied using strong-coupling expansion theory. The model has an
exact dimerized ground state as well as exact one-triplet excitations in a special case that the frustration J2

is equal to the in-plane coupling J1. We demonstrate that the models with and without frustrations have
distinct excitation spectra, so their thermodynamic properties exhibit quite different behaviors. Especially,
the low-temperature behaviors of the frustrated model with J1 = J2 are independent of the inter-dimer
couplings, due to the exact one-triplet excitations.

PACS. 75.10.Jm Quantized spin models – 75.30.Kz Magnetic phase boundaries (including magnetic
transitions, metamagnetism, etc.) – 75.40.Cx Static properties (order parameter, static susceptibility, heat
capacities, critical exponents, etc.)

In the recent past few years, the bilayer Heisenberg
model on a square lattice has been intensively stud-
ied [1–5]. This model is introduced to explain the un-
usual normal state properties of the high temperature su-
perconductor YBa2Cu3O6+x firstly [1], but it has more
theoretical interest in its own right for it displays a
continuous quantum phase transition as the interlayer
coupling J0 becomes strong. The model with weak J0

has a Néel ordered ground state. With J0 increasing,
the interlayer coupling destroys the long-range order and
leads to the dimerization of each pair of spins connected
by J0. The transition point has been determined to be
J1c ≈ 0.4 J0 [3,4] where J1 is the in-plane coupling. The
excitations are spin-triplets with a finite gap. The dimer-
ized phase with gapped excitations has been observed in
the strong-coupling bilayer compound BaCuSi2O6 [6].

In this paper, we study a frustrated bilayer Heisenberg
model (FBM) which shows richer ground state proper-
ties [7]. As indicated in Figure 1, this model is defined on
a double layers which connect to each other not only per-
pendicularly by J0, but also diagonally by J2. The Hamil-
tonian is written as H = H0 +HI, with

H0 =
∑
i

[J0S1,i · S2,i − h(Sz1,i + Sz2,i)],

HI =
∑
〈ij〉

[J1(S1,i · S1,j + S2,i · S2,j)

+ J2(S1,i · S2,j + S2,i · S1,j)], (1)
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Fig. 1. The frustrated bilayer model with 2N spins. The two
thick parallel lines in the front of the figure denote the frus-
trated spin-ladder.

and J0, J1, J2 > 0. H0 describes a isolated dimer system
and HI represents interactions between the dimers. h is
the external magnetic field. It has been found that the
FBM has an exactly dimerized ground state as well as
a class of exact excited states when the couplings satisfy
the constraint J1 = J2 = J and J is smaller than a crit-
ical value Jc [7]. At Jc ≈ 0.43J0, the FBM undergoes a
disorder-order phase transition. But, the transition is dif-
ferent from that occurring in the non-frustrated model.
(i) In FBM the transition is first-order, while it is second-
order in the non-frustrated model. (ii) When J > Jc, the
FBM has spin-1 Néel order, i.e., the two spins connected
by J0 form spin triplets. In contrast, the non-frustrated
model with large J1 has spin- 1

2 Néel order.
Figure 2 shows the schematic phase diagram of the

FBM in the parameter space (J1, J2). The present study
is focused on the dimerized phase. In the dimerized phase,
the coupling J0 is stronger than J1 and J2, so we can
treat HI as a perturbation and perform a strong-coupling
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Fig. 2. Schematic phase diagram of the frustrated bilayer
model.

expansion. Eigenstates of the unperturbed term H0 are
direct products of the eigenstates of each spin-pair whose
Hamiltonian is H0

i = J0S1,i ·S2,i−h(Sz1,i+Sz2,i). The two
coupled spins S1,i and S2,i form four eigenstates including
a singlet state |si〉 with eigenvalue Es = −3J0/4 and three
triplet states |tσi 〉 with eigenvalues Eσt = J0/4 − σh, cor-
responding to the spin-z component σ = Sz1,i + Sz2,i =
−1, 0, 1. Therefore, the ground state of H0 is |g〉 =
|s...s...s〉, and the nth excited eigenstates |n〉 are obtained
by promoting n site-singlets to triplets and leaving (N−n)
sites in singlets.

Earlier than the FBM, a frustrated two-leg spin-ladder
had attracted much attention [8–11]. As shown in Figure 1,
the model can be regard as a special case of the FBM. Bose
and Gayen firstly suggested that the frustrated two-leg
spin-ladder has completely dimerized ground state in the
case of J1 = J2 [8]. It undergoes a first-order transition
from the dimerized phase to the Haldane-type phase as
J1 increases. The phase diagram in a larger parameter
space (J1, J2) has studied by Zheng et al. [11]. Due to the
similarity between the two models, present treatment of
the FBM is also suitable to the frustrated spin-ladder.

Firstly, performing a third-order zero-temperature per-
turbation expansion [12,13], we obtain the ground state
energy,

EG = −3J0

4
N − 3A2

J0
N − 3A2B

J2
0

N. (2)

Here, A andB are coupling constants,A = (J1−J2)/2 and
B = (J1+J2)/2.N is the number of the sites on each layer.
Next, we look at the first excited state |s...tσ...s〉 (which
represents the one-triplet excitations). The unperturbed
first excited state is expressed as the Bloch state:

|1σk〉 =
1√
N

∑
i

eikri |s...tσi ...s〉, (3)

where k is the wave vector in the first Brillouin zone.
The corrected excitation spectrum up to the third-order

expansion is given by

ωσt (k) = J0 + 2A(cos kx + cos ky) + 6
A2

J0

− A2

J0
(cos 2kx + cos 2ky)− 2

A2

J0

[
cos(kx + ky)

+ cos(kx − ky)
]

+ 6
A2B

J2
0

− 4
A3

J2
0

(cos kx + cos ky)

− 2
A2B

J2
0

(cos 2kx+ cos 2ky)−4
A2B

J2
0

[
cos(kx+ky)

+ cos(kx − ky)
]

+
A3

J2
0

(cos 3kx + cos 3ky)

+ 3
A3

J2
0

[
cos(2kx + ky) + cos(2kx − ky)

+ cos(kx + 2ky) + cos(kx − 2ky)
]
. (4)

Because of the existence of the inter-dimer couplings J1

and J2, the excitation energy is expanded to a continuous
energy band with bandwidth w ≈ 4|J1−J2|. The spectrum
opens a energy gap at k = (π, π),

∆ = ωσt (π, π) = J0 − 4A− 6A2B

J2
0

− 6A3

J2
0

· (5)

In the parameter space (J1, J2), there are two cases which
are of special interest. One is that J2 = 0, when the model
is reduced to the non-frustrated bilayer model. Another is
that J2 = J1, when the FBM has exactly dimerized ground
state, |g〉 = |s...s〉. In the former case, ∆ decreases with
J1 and vanishes at J1c ≈ 0.437J0 which signals a second-
order phase transition from the dimerized phase to the
spin- 1

2 Néel phase. The critical value is in good agreement
with the numerical result [3,4]. For small J2, the phase
boundary is similarly determined by examining the dis-
appearance of the gap. The result is shown in Figure 2
as solid squares. For larger J2, the phase transition is of
first-order and the gap will not disappear continuously at
the critical point. In order to determine the phase bound-
ary, one need compare the ground state energy of the two
phases. The ground state energy of the dimerized phase
becomes larger with J2 increasing (see Eq. (2)). Unfortu-
nately, the present method can not calculate EG of the
ordered phase.

J2 = J1 is a very special point. At this point, all the
correction terms in equations (2, 4) are cancelled. The
ground state energy, EG = −3J0N/4, and the excitation
spectrum, ωσt = J0, are equal to those of the unperturbed
state |g〉 and |1σk〉 respectively. Those results are consis-
tent with the conclusion that the FBM with J2 = J1 has
exact ground state and first-excited state [7,9]. Note that
the first-excitation spectrum is dispersionless and inde-
pendent of the inter-dimer couplings. In the following, we
investigate thermodynamic properties of the FBM at the
special point. Henceforth, it is assumed that J2 = J1 = J
for the FBM.

The thermodynamic properties are studied by a third-
order cumulant expansion method. This method is well
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F (h, T ) = −3J0

4
N − 1

β
N lnE +

"
Be−2βJ0(e2βh + e−2βh − 2)− 3A2

2J0
(1− e−2βJ0)− 3A2B

2J2
0

(1− e−2βJ0)

−A2βe−βJ0(eβh+e−βh+1)−B
2β

2
e−2βJ0(e2βh+e−2βh+2eβh+2e−βh+6)+

3A2Bβ

J0
e−2βJ0 +

B3β2

6
e−2βJ0(e2βh+e−2βh−8)

#
2NE−2

−
h
B2βe−3βJ0(e3βh+e−3βh−eβh−e−βh)−A2Bβ2e−2βJ0(e2βh+e−2βh−2)−B3β2e−3βJ0(eβh+e−βh+1)(e2βh+e−2βh−2)

i
6NE−3

+

"
B2βe−4βJ0(e2βh + e−2βh − 2)− 3A2Bβ

J0
(e−2βJ0 − e−4βJ0)− 2A2Bβ2e−3βJ0(eβh + e−βh + 1)−B3β2e−4βJ0(e2βh + e−2βh

+ 2eβh + 2e−βh + 6)

#
(e2βh + e−2βh − 2)7NE−4 + 18B3β2e−4βJ0(e4βh + e−4βh − 2)NE−4 − 60B3β2e−5βJ0(e2βh + e−2βh − 2)

× (e3βh + e−3βh − eβh − e−βh)NE−5 +
116

3
B3β2e−6βJ0(e2βh + e−2βh − 2)3NE−6, (9)

applicable to the dimerized phase [14]. First of all, we cal-
culate the partition function, Z = Tr[exp(−βH)], whose
cumulant expansion is

Z = Z0 exp

[ ∞∑
n=1

Un

]
. (6)

The former three cluster functions Un are defined as

U1 =
Z1

Z0
,

U2 =
Z2

Z0
− 1

2

(
Z1

Z0

)2

,

U3 =
Z3

Z0
− Z2Z1

Z2
0

+
1
3

(
Z1

Z0

)3

. (7)

Here Zn (n = 0, 1, 2, 3) is the nth order perturbation
expansion,

Zn = (−1)n
β∫

0

dτ1

×
τ1∫

0

dτ2...

τn−1∫
0

dτnTr[e−βH
0
HI(τ1)HI(τ2)...HI(τn)], (8)

with HI(τ) = eτH
0
HIe−τH

0
and β = 1

kBT
. Zn can be

integrated based on the eigenstates of the unperturbed
Hamiltonian H0 [14] and then we obtain the cumulant
expansion of the free energy from the partition function
F (h, T ) = − 1

β lnZ,

see equation (9) above

where E = 1 + (1 + eβh + e−βh)e−βJ0 . The specific heat
C(T ) and the uniform susceptibility χ(T ) per spin can be
derived from the free energy by the standard method.

Figure 3 shows the specific heat of the FBM with
J/J0 = 0.0, 0.2 and 0.4. To make a comparison, C(T )

Fig. 3. Specific heat per spin C(T ) of the FBM versus tem-
perature T for J/J0 = 0.0, 0.2, 0.4. The inset shows the spe-
cific heat for the non-frustrated bilayer model. Lines show re-
sults of the cumulant expansions and symbols are obtained by
equation (10).

of the non-frustrated bilayer model is plotted in the in-
set. Both the two models show a round peak in the
specific heat, which is a basic feature of the dimer-
ized phase. Furthermore, some different behaviors are ob-
served. (1) At low temperatures, the specific heat of the
FBM seems independent of the inter-dimer coupling J.
But the low-temperature behaviors of the non-frustrated
model vary with J1. (2) At higher temperatures, for the
FBM the peak grows and sharpens as J becomes strong.
The position of the peak moves left gradually. For the lat-
ter model, in contrast, the peak becomes low and round
and move right with J1 increasing.

The low temperature behaviors are determined by the
first excitations. According to equation (4), it is easy
to understand the low temperature behaviors of the two
models because the excitation spectrum of the FBM is in-
dependent of J while the excitation spectrum of the non-
frustrated model depends strongly on J1, with bandwidth
w ≈ 4J1.
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Fig. 4. Uniform susceptibility per spin χ(T ) of the FBM for
J/J0 = 0.0, 0.2, 0.4, compared with those of the non-frustrated
model shown in the inset.

For the non-frustrated model, reference [15] provided
a simple method to estimate the specific heat using the
first excitation spectrum,

C(T ) =
3
2
β2 z′′(β)

1 + 3z(β)
− 9

2
β2

(
z′(β)

1 + 3z(β)

)2

. (10)

Here z(β) =
∫

BZ dke−βω
σ
t (k)/Ω∗, Ω∗ is the area of the

Brillouin zone. z′(β) and z′′(β) are the first- and second-
order derivations of z(β) with respect to β. They argued
that the estimate is reliable both at low and high tem-
peratures [15]. Substitute equation (4) into (10), we find
that the obtained results (shown in the inset as sym-
bols) display a peak varying with J1 in the same way
as the cumulant expansion results although they are not
in quantitative agreement. Contrarily, for the FBM the
first excited state does not account for the J-dependence
of C(T ) at high temperatures since ωσt (k) is a constant
for different J . In this case, one must take the higher ex-
cited states (which represent multi-triplet excitations) into
account because the multi-triplet excitations become the
favorable excitations at higher temperatures. For exam-
ple, the excited energy of the two-triplet excitation [7]
|T 〉 = |s...(t0i t0i+1 − t1i t−1

i+1 − t−1
i t1i+1)...s〉 is ωT = 2J0 − 2J

which is obviously lower than that of two separate triplets.
The energy of each triplet averages J0 − J . Using this av-
erage excitation energy to estimate the specific heat ap-
proximately by equation (10), we can obtain the peak
in C(T ) sharpening and moving left with J . It explains
the cumulant expansion result qualitatively. Therefore, we
may draw a conclusion that dominant contributions to the
high-temperature properties come from the multi-triplet
excitations.

The uniform susceptibility χ(T ) of the FBM is plotted
in Figure 4, compared with those of the non-frustrated
model shown in the inset. The low-temperature behaviors
of χ(T ) are determined by the lowest spin-flip excitation

|tσi 〉, so it is no wonder that χ(T ) of the FBM displays sim-
ilar low temperature behaviors for different J . At higher
temperatures, χ(T ) of the FBM is smaller than the corre-
sponding value of the non-frustrated model. It might be
relative to the fact that |T 〉 is a spinless excitation and
therefore it has no contributions to χ(T ).

One can also get the internal energy U(T ) from
equation (9). As T → 0, U(T ) tends to the ground state
energy EG as described by equation (2) which is correct
only in the dimerized phase. Therefore, the cumulant ex-
pansion method is not suitable to calculated thermody-
namics, especially the low temperature behaviors, of the
ordered phase. As a consequence, the obtained results be-
come not quite reliable with the coupling J close to the
critical point Jc. It can be seen that there appears a shoul-
der in χ(T ) at J/J0 = 0.4. When J > Jc, the shoulder will
protrude.

To summarize, we have performed third-order cumu-
lant expansions to study thermodynamic properties of the
frustrated bilayer model in the dimerized phase. The one-
triplet excitation spectrum is also calculated by a third-
order zero-temperature perturbation theory. The mod-
els with and without frustrations have distinct excitation
spectra, so their thermodynamic properties exhibit quite
different behaviors. Especially, the low-temperature be-
haviors of the frustrated bilayer model are independent of
the inter-dimer couplings. We demonstrate that the one-
triplet excitation spectrum can qualitatively account for
the thermodynamics of the non-frustrated model both at
low and high temperatures, while in the frustrated model
the high temperature behaviors are apparently affected by
the multi-triplet excitations. Our study also suggest that
the strong coupling expansions yield reasonable results at
the whole temperature region for the dimerized phase.
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